## Unit III - Linear Mappings

- linear map(ping)s, transformations, operators
- kernel and image of a linear mapping
- rank and nullity
- matrix transformations
- non-singular and invertible maps
- matrix representation of a general linear map
- change of basis
- similarity relationship


## Several matrix threads converging....

We use matrices in three separate [but related] contexts that must be kept clear....

1. As vectors in the vector space $M_{m, n}$ of matrix addition and scalar multiplication
2. To generate row and column spaces

- examining linear independence of vectors in $R^{n}$
- in applications related to linear systems [last unit]

3. To define and/or represent linear mappings between vector spaces

- this application motivates the matrix product definition
- we study linear mappings in this unit....


## The basic definition

- $\quad \mathrm{V} \& \mathrm{U}$ are vector spaces over the same scalars
- a function $\mathrm{f}: \mathrm{V} \rightarrow \mathrm{U}$ is a linear mapping if it preserves the vector space operations
- this means that for $\mathrm{v}, \mathrm{w} \in \mathrm{V}$ and scalar k ...

$$
\begin{aligned}
f(v+w) & =f(v)+f(w) \\
f(k v) & =k f(v)
\end{aligned}
$$

- alternative terminology
- linear transformation [particularly when f: $\mathrm{R}^{\mathrm{n}} \rightarrow \mathrm{R}^{\mathrm{m}}$ ]
- linear operator when $\mathrm{f}: \mathrm{V} \rightarrow \mathrm{V}$ [same v.s.]
- linear map
- linear function


## Example: linear maps

[Problem 5.9] Show that $T: R^{2} \rightarrow R^{2}$ defined by $T(x, y)=(x+y, x)$ is a linear map.
Image of a linear map
I the image (range) of T is a subspace of $\mathrm{U} \ldots \ldots$
$\mathrm{T}(\mathrm{V})=\mathrm{im}(\mathrm{T})=\{\mathrm{u} \in \mathrm{U} \mid \mathrm{u}=\mathrm{T}(\mathrm{v})$ for some $\mathrm{V} \in \mathrm{V}\}$

## Some important linear maps

- the zero map $\mathrm{T}_{0}: \mathrm{V} \rightarrow \mathrm{U}$ defined by $\mathrm{T}_{0}(\mathrm{v})=\mathbf{0}$
- the identity operator $\mathrm{T}_{1}: \mathrm{V} \rightarrow \mathrm{V}$ defined by $\mathrm{T}_{1}(\mathrm{v})=\mathrm{v}$
- a dilation $[k>1]$ and contraction $[0<k<1]$ operator $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{V}$ defined by $\mathrm{T}(\mathrm{v})=\mathrm{kv}$
- re-visit this idea when we've studied eigenvalues [unit IV]
- a projection operator $\mathrm{T}: \mathrm{R}^{\mathrm{n}} \rightarrow \mathrm{W}=$ a subspace of $\mathrm{R}^{\mathrm{n}}$
- $\quad R^{3}$ onto the $x y$-plane defined by $T(x, y, z)=(x, y, 0)$
- $\quad R^{3}$ onto the $z$-axis defined by $T(x, y, z)=(0,0, z)$


## Some other important linear maps

- a reflection operator $\mathrm{T}: \mathrm{R}^{\mathrm{n}} \rightarrow \mathrm{R}^{\mathrm{n}}$
- e.g. $T(x, y, z)=(-x, y, z)$ reflection in the $y z$-plane
- a rotation operator $\mathrm{T}: \mathrm{R}^{2} \rightarrow \mathrm{R}^{2}$
- $T(x, y)=(x \cos \theta-y \sin \theta, x \sin \theta+y \cos \theta)$ rotates $(x, y)$ by angle $\theta$ counter-clockwise
- if $B$ is a basis of $V$ the coordinate representation is $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{R}^{\mathrm{n}}$ defined by $\mathrm{T}(\mathrm{v})=[\mathrm{V}]_{\mathrm{B}}=$ the coordinates of $v$ with respect to $B$

Examples: linear maps of function spaces

- $\quad T: P_{n} \rightarrow P_{n+1}$ defined by $(T(p))(t)=t p(t)$ is a linear map
- the differentiation map D: $C^{1}[-\infty, \infty] \rightarrow F[-\infty, \infty]$ defined by $(D(f))(x)=f^{\prime}(x)$ the derivative function
- the integration map J: $C^{0}[-\infty, \infty] \rightarrow C^{1}[-\infty, \infty]$ defined
by $(\mathrm{J}(\mathrm{f}))(\mathrm{x})=\int_{0}^{x} f(t) d t$

Non-examples: map that are NOT linear

- $\quad T: M_{n n} \rightarrow R$ defined by $T(A)=\operatorname{det}(A)$
$-\quad$ not linear because $\operatorname{det}(A+B) \neq \operatorname{det} A+\operatorname{det} B$
- $\quad T: R^{3} \rightarrow R$ defined by $T(x, y, z)=x^{2}+y^{2}+z^{2}$
- not linear because $T(k v)=k^{2} T(v)$
- a translation operator $T: R^{2} \rightarrow R^{2}$ defined by $T(x, y)=(x+2, y-5)$
- not linear because $T(0)=(2,-5) \neq(0,0)$
- the operator $T: R^{2} \rightarrow R^{2}$ defined by $T(x, y)=(x y, x)$
- not linear because $T(v+w) \neq T(v)+T(w)$


## Composition of mappings

- let $T_{1}: V \rightarrow U$ and $T_{2}: U \rightarrow W$ be linear maps
- the composition of the two maps is the map $T_{2} \circ T_{1}: V \rightarrow W$ defined by $\left(T_{2} \circ T_{1}\right)(v)=T_{2}\left(T_{1}(v)\right)$
- the composition of two linear maps is a linear map


## Matrix transformations

- for any $m \times n$ matrix $A$ we can define a matrix transformation $T_{A}: R^{n} \rightarrow R^{m}$ by the matrix product $T_{A}(v)=A v$
- the identity map corresponds to the identity matrix
- the zero map corresponds to the zero matrix
- let $A$ be $m \times p$ and $B$ be $p \times n$ matrices
- the composition of the two linear transformations $T_{A}: R^{p} \rightarrow R^{m}$ and $T_{B}: R^{n} \rightarrow R^{p}$ is $T_{A B}: R^{n} \rightarrow R^{m}$
- so composition of linear transformations corresponds to the product of their matrices

$$
T_{A} \circ T_{B}: R^{n} \rightarrow R^{m}
$$

## Example: matrix transformations

[Problem 5.10] Use matrices to show that $T: R^{3} \rightarrow R^{2}$ defined by $T(x, y, z)=(x+y+z, 2 x-3 y+4 z)$ is a linear map.

## Using bases to define transformations

- let $\left\{v_{1}, \ldots v_{n}\right\}$ be a basis of $V$ and $\left\{u_{1}, \ldots u_{n}\right\}$ any vectors in U
- define a mapping $\mathrm{T}: V \rightarrow \mathrm{U}$ by

$$
T(v)=a_{1} u_{1}+\ldots+a_{n} u_{n}
$$

where $v=a_{1} v_{1}+\ldots+a_{n} v_{n}$ is expressed in terms of the given basis

- this completely characterizes a unique linear map $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{U}$ in terms of its action on a basis:
$\mathrm{T}\left(\mathrm{v}_{1}\right)=\mathrm{u}_{1}, \mathrm{~T}\left(\mathrm{v}_{2}\right)=\mathrm{u}_{2}, \ldots, \mathrm{~T}\left(\mathrm{v}_{\mathrm{n}}\right)=\mathrm{u}_{\mathrm{n}}$
- to show this take $v=a_{1} v_{1}+\ldots+a_{n} v_{n}$ and $\mathrm{w}=\mathrm{b}_{1} \mathrm{v}_{1}+\ldots+\mathrm{b}_{\mathrm{n}} \mathrm{v}_{\mathrm{n}}$
- we have....
....Using bases to define transformations
- $T(v+w)=T\left[\left(a_{1}+b_{1}\right) v_{1}+\ldots+\left(a_{n}+b_{n}\right) v_{n}\right]$

$$
=\left(a_{1}+b_{1}\right) u_{1}+\ldots+\left(a_{n}+b_{n}\right) u_{n}
$$

$$
=\left(a_{1} u_{1}+\ldots+a_{n} u_{n}\right)+\left(b_{1} u_{1}+\ldots+b_{n} u_{n}\right)
$$

$$
=T(v)+T(w)
$$

- $\quad T(k v)=T\left(k a_{1} v_{1}+\ldots+k a_{n} v_{n}\right)$
$=k a_{1} u_{1}+\ldots+k a_{n} u_{n}$
$=k\left(a_{1} u_{1}+\ldots+a_{n} u_{n}\right)$ $=\mathrm{kT}(\mathrm{v})$
- so the mapping is linear
- it is also easy to show that putting $T\left(v_{i}\right)=u_{i}$ defines a unique map T [see problem 5.13]

Example: Using bases to define a linear map
[Problem 5.14] Find the unique linear map $T: R^{2} \rightarrow R^{2}$ so that $\mathrm{T}(1,2)=(2,3)$ and $\mathrm{T}(0,1)=(1,4)$

## Example: Using bases

(a) Find the unique linear map $T: R^{3} \rightarrow R^{2}$ so that $T(1,1,1)=(1,0)$, $T(1,1,0)=(2,-1), T(1,0,0)=(4,3)$ [Translation: Find a formula for $T(x, y, z)]$ (b) Evaluate $T(2,-3,5)$.

## The kernel and image of a linear map

- $\quad \mathrm{T}: \mathrm{V} \rightarrow \mathrm{U}$ is a linear map ....
- $T(V)$ is a subspace of $U$.... [the image of $T$ ]
- $\operatorname{ker}(T)$ is a subspace of $\mathrm{V} \ldots$... [the kernel of $T$ ]

Don't get confused about this point!

Finding the image of a linear map

- if $\left\{v_{1}, \ldots, v_{n}\right\}$ span $V$ and $T: V \rightarrow U$ is a linear map then $\left\{\mathrm{T}\left(\mathrm{v}_{1}\right), \ldots, \mathrm{T}\left(\mathrm{v}_{\mathrm{n}}\right)\right\}$ span the image $\mathrm{T}(\mathrm{V})$
- let $u \in T(V)$
- then $u=T(v)$ for some $v \in V$
- but $v=a_{1} v_{1}+\ldots+a_{n} v_{n}$
- so $u=T\left(a_{1} v_{1}+\ldots+a_{n} v_{n}\right)=a_{1} T\left(v_{1}\right)+\ldots+a_{n} T\left(v_{n}\right)$
- soa linear map preserveslinear combinations of vectors

The rank of a linear map

- the rank of a linear map $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{U}$ is the dimension of its image $T(V)$
- if $T_{A}: R^{n} \rightarrow R^{m}$ is a matrix transformation the rank of $T_{A}$ is the rank of the matrix $A$
- $T_{A}\left(R^{n}\right)$ is just the column space of $A$ [slide 21] so the two concepts coincide

Finding the image of a linear map
[Text example 5.9] find a basis for the image of $T: R^{4} \rightarrow R^{3}$ defined by $T(x, y, z, t)=(x-y+z+t, 2 x-2 y+3 z+4 t, 3 x-3 y+4 z+5 t)$

- this example illustrates something important
- even though a linear map preserves linear combinations of vectors ....
- .... a linear map does NOT preserve linear independence in general
- so a basis of V does NOT necessarily map to a basis of the image $\mathrm{T}(\mathrm{V})$


## Example: image of a linear map

[Problem 5.16] Find a basis for the image of $T: R^{4} \rightarrow R^{3}$ defined by $T(x, y, z, t)=(x-y+z+t, x+2 z-t, x+y+3 z-3 t)$

Example: image of a linear map
[Problem 5.17] find a basis for the image of $T: R^{3} \rightarrow R^{3}$ defined by $T(x, y, z)=(x+2 y-z, y+z, x+y-2 z)$

The nullity of a linear map

- the nullity of a linear map $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{U}$ is the dimension of its kernel $\operatorname{ker}(\mathrm{T})$
- if $T_{A}: R^{n} \rightarrow R^{m}$ is a matrix transformation the kernel $\operatorname{ker}\left(T_{A}\right)$ is called the nullspace of $A$
- $\operatorname{ker}\left(T_{A}\right)$ consists of all vectors $v$ for which $A v=0 \ldots$. so to find a basis for $\operatorname{ker}\left(T_{A}\right)$ you just solve this system of linear equations

A VERY important result

- for a linear map T: V $\rightarrow$ U we have rank $\mathrm{T}+$ nullity $\mathrm{T}=\operatorname{dim} \mathrm{V}$
- for a matrix transformation $T_{A}: R^{n} \rightarrow R^{m}$ this translates to a matrix result about $A$
rank $A+$ nullity $A=n$

These relationships are central to all of linear algebra

Examples: kernel of a linear map
[Problem 5.16] Find a basis for the kernel of $T: R^{4} \rightarrow R^{3}$ defined by $T(x, y, z, t)=(x-y+z+t, x+2 z-t, x+y+3 z-3 t)$

## Examples: kernel of a linear map

[Problem 5.17] Find a basis for the kernel of $T: R^{3} \rightarrow R^{3}$ defined by $T(x, y, z)=(x+2 y-z, y+z, x+y-2 z)$

## Non-singular maps

- a map $\mathrm{T}: \vee \rightarrow \mathrm{U}$ is non-singular if ker $\mathrm{T}=\{0\}$
- equivalently a map is singular if the image of some non-zero vector is zero as shown below....



## Illustrative examples

- examples of singular maps:
- the zero map is singular
- a projection map is singular, e.g. $T(x, y, z)=(x, y, 0)$ because $T(0,0, z)=(0,0,0)$ for any $z$
- the differentiation operator $D$ on $P_{n}$ is singular because all constant polynomials get mapped to the zero polynomial
- the maps in example 5.9 and problems 5.16\&5.17 [slides 30-31] are all singular because they have non-zero kernels
- examples of non-singular maps:
- the identity, dilation, contraction, and rotation maps are all non-singular
- the map T: $R^{2} \rightarrow R^{3}$ defined by $T(x, y)=(x+y, x-y, x+y)$ is non-singular $[T(x, y)=(0,0,0)$ implies $(x, y)=(0,0)]$
- any matrix transformation $T_{A}: R^{n} \rightarrow R^{m}$ for which rank $A$ $=\mathrm{n}$ is non-singular [why?]


## One-to-one maps

- $\quad$ a map $T: V \rightarrow U$ is one-to-one if $T(v)=T(w)$ implies $\mathrm{v}=\mathrm{w}$
- obviously a singular map cannot be one-to-one but...not all non-singular maps are one-to-one
- maps as shown below are not one-to-one


Unit III - Linear Maps

## Non-singular linear maps

- a linear map $T: V \rightarrow U$ is one-to-one if and only if it is non-singular
- T one-to-one implies only the zero vector maps to the zero vector of $U$
- $\quad \mathrm{T}$ non-singular and $T(v)=T(w)$ implies
$\mathrm{T}(\mathrm{v}-\mathrm{w})=\mathrm{T}(\mathrm{v})-\mathrm{T}(\mathrm{w})=0$ so $\mathrm{v}-\mathrm{w}=0$ or $\mathrm{v}=\mathrm{w}$
- a non-singular linear map $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{U}$ preserves the linear independence of vectors in the images
- suppose $v_{1}, v_{2}, \ldots, v_{n}$ are linearly independent
- suppose $\mathrm{a}_{1} \mathrm{~T}\left(\mathrm{v}_{1}\right)+\ldots+\mathrm{a}_{\mathrm{n}} \mathrm{T}\left(\mathrm{v}_{\mathrm{n}}\right)=0$
- $\quad T$ is linear so $T\left(a_{1} v_{1}+\ldots+a_{n} v_{n}\right)=0$
- $T$ is non-singular so $a_{1} v_{1}+\ldots+a_{n} v_{n}=0$
- but $v_{1}, v_{2}, \ldots, v_{n}$ are linearly independent so all $a_{i}=0$


## Onto maps

- a map $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{U}$ is onto if the range $\mathrm{T}(\mathrm{V})=\mathrm{U}$
- in other words 'the images of vectors in V cover the entire space U'



## Onto linear maps

- a non-singular linear map $T: V \rightarrow U$ is automatically one-to-one but it may not be onto....
- example
- define the map T: $\mathrm{P}_{\mathrm{n}} \rightarrow \mathrm{P}_{\mathrm{n}+1}$ as 'multiplication by t ' [slide 9]
- $T\left(a_{0}+a_{1} t+a_{2} t^{2}+\ldots+a_{n} t^{n}\right)=a_{0} t+a_{1} t^{2}+a_{2} t^{3}+\ldots+a_{n} t^{n+1}$
- T is a non-singular linear map but.....
- $T$ is not onto because the constant polynomials in $P_{n+1}$ are not in the image of $T$
- in general for $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{U}$ if $\operatorname{dim} \mathrm{U}>\operatorname{dim} \mathrm{V}$ it is possible to define one-to-one (non-singular) maps that aren't onto
- the problem here is that there is 'more room in U than V ' so there can be vectors in U not in $\mathrm{T}(\mathrm{V})$


## Non-singular linear operators

- in particular, for linear operators $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{V}$ all of the following are equivalent
- T is non-singular
- Tis one-to-one
- $T$ is onto
- further in particular, these results apply in the case of matrix transformations $T_{A}: R^{n} \rightarrow R^{n}$, i.e. for which $A$ is square...all of the following are equivalent
- $A v=0$ has only the zero solution $v=0$ [non-singular]
- any vector $b \in R^{n}$ can be written $b=A x$ for some $x \in R^{n}$ [onto]
- $\quad$ rank $A=n$ [onto]


## Non-singular linear maps again

- the situation is fixed when U and V have the same finite dimension.....
- provided $\operatorname{dim} \mathrm{V}=\operatorname{dim} \mathrm{U}$ a linear map $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{U}$ is onto if and only if it is non-singular
- if $T$ is onto then $T(V)=U \Rightarrow \operatorname{rank} T=\operatorname{dim} U=n$ say,
so nullity $\mathrm{T}=\operatorname{dim} \mathrm{V}-\operatorname{rank} \mathrm{T}=\mathrm{n}-\mathrm{n}=0$
so $\operatorname{ker} T=\{0\}$, i.e. $T$ is non-singular
- if T is non-singular then nullity $\mathrm{T}=0$
$\Rightarrow$ rank $\mathrm{T}=\operatorname{dim} \mathrm{V}-$ nullity $\mathrm{T}=\mathrm{n}-0=\mathrm{n}$,
i.e. $\operatorname{dim} T(V)=n=\operatorname{dim} U$,
so we must have $T(V)=U$ [why?], i.e. $T$ is onto


## Invertible matrix transformations

- if the linear map is a matrix transformation $T_{A}: R^{n} \rightarrow R^{m}$ it is invertible precisely when the matrix $A$ is invertible
- the inverse map is defined by $T_{A}^{-1}=T_{A^{-1}}$
- A must be a square matrix [slides 38-39]
- so a square matrix is invertible if and only if it is non-singular...the two concepts coincide


## Invertible maps

- in order to invert a map $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{U}$ we need to define a map $\mathrm{T}^{-1}: ~ \mathrm{U} \rightarrow \mathrm{V}$ which reverses T
- defining $\mathrm{T}^{-1}$ in this way by un-doing the action of T requires that all vectors in $U$ must be images of
- some vector in $\mathrm{V}[\mathrm{T}$ is onto]
- only one vector in V [ T is one-to-one]
- i.e. to be invertible the map has to be one-to-one and onto $U$ [called an isomorphism]
- formal definition: a map $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{U}$ is invertible if there is another map $\mathrm{T}^{-1}: \mathrm{U} \rightarrow \mathrm{V}$ so that $T^{-1} \circ T$ is the identity operator on V and $T \circ T^{-1}$ is the identity operator on U

Example: non-singular non-invertible linear map

## Example: invertible matrix transformation

[Problem 5.40] Is the operator $T: R^{3} \rightarrow R^{3}$ defined by $T(x, y, z)=(2 x, 4 x-y, 2 x+3 y-z)$ invertible? Find the inverse.

## Plaine English summary 1

- $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{U}$ any old map
- a non-singular map
- no non-zero vector maps to the zero vector
- a one-to-one map
- two different vectors don't map to the same image vector
- an onto map
- there are no vectors in $U$ that aren't the image of some vector in V
- an isomorphism
- both one-to-one and onto
- an invertible map
- must be an isomorphism to define an inverse map


## Plaine English summary 2

- a linear map $T: V \rightarrow U$
- preserves linear combinations
- a spanning set for $V$ maps to a spanning set for the image
- is completely characterized by its action on a basis of $\vee$
- a non-singular linear map
- must also automatically be one-to-one
- preserves the linear independence of vectors in the image vectors
- a non-singular linear map with $\underline{\operatorname{dim} U=\operatorname{dim} V}$
- must also automatically be onto
- is an isomorphism
- is invertible
- for linear operators all of the terms are equivalent


## Matrix representations: to do list

1. How do we construct a matrix representation $A$ for a general linear transformation $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$ ?

- we'll restrict to the case of a linear operator where $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{V}$, but only to keep things a little simple
- in this case the matrix $A$ will be square and....
- $T(v)=A[v]$ where $[v] \in R^{n}$ are coordinates of $v \in V$

2. How do the coordinates of a vector change when we use a different basis?
3. How does the matrix representation of a linear operator change if we change the basis?

## 1. Matrix representation of a linear operator

- let $V$ be a finite-dimensional v.s.
- choose a basis $\beta=\left\{\mathrm{u}_{1}, \ldots, \mathrm{u}_{\mathrm{n}}\right\}$ of V ..notation alert :-(
- a linear operator $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{V}$ is completely determined by its action on a basis of $V$ : $T\left(u_{1}\right), \ldots, T\left(u_{n}\right)$
- these are vectors in $V$, so they can be expressed in terms of the basis $\beta$ :

$$
\begin{aligned}
& \mathrm{T}\left(u_{1}\right)=\mathrm{a}_{11} u_{1}+\mathrm{a}_{12} u_{2}+\ldots+\mathrm{a}_{1 n} u_{n} \\
& \mathrm{~T}\left(\mathrm{u}_{2}\right)=\mathrm{a}_{21} u_{1}+\mathrm{a}_{22} u_{2}+\ldots+\mathrm{a}_{2 n} u_{n}
\end{aligned}
$$

$$
T\left(u_{n}\right)=a_{n 1} u_{1}+a_{n 2} u_{2}+\ldots+a_{n n} u_{n}
$$

- recall the coordinates of $T\left(u_{i}\right)$ with respect to $\beta$ are just $\left[\mathrm{T}\left(\mathrm{u}_{\mathrm{i}}\right)\right]_{\beta}=\left[\mathrm{a}_{\mathrm{i} 1}, \mathrm{a}_{\mathrm{i} 2}, \ldots, \mathrm{a}_{\mathrm{in}}\right]_{\beta}$


## Matrix representation of a linear operator

- arrange these coordinate vectors as the columns of a matrix: $[T]_{\beta}=\left[\left[T\left(u_{1}\right)\right]_{\beta}\left|\left[T\left(u_{2}\right)\right]_{\beta}\right| \cdots \mid\left[T\left(u_{n}\right)\right]_{\beta}\right]$

$$
=\left[\begin{array}{r|r|r|r}
a_{11} & a_{21} & \cdots & a_{n 1} \\
a_{12} & a_{22} & \cdots & a_{n 2} \\
\vdots & \vdots & \cdots & \vdots \\
a_{1 n} & a_{2 n} & \cdots & a_{n n}
\end{array}\right]
$$

- this is called the matrix representation of T with respect to the basis $\beta$
- we can use this matrix $[T]_{\beta}$ and coordinate vectors in $\mathrm{R}^{\mathrm{n}}$ instead of T and vectors in V because:

$$
[\mathrm{T}(\mathrm{v})]_{\beta}=[\mathrm{T}]_{\beta}[\mathrm{v}]_{\beta}
$$

## Example: Matrix representation in $\mathrm{R}^{2}$

[Problem 6.2] $\mathrm{T}(\mathrm{x}, \mathrm{y})=(2 \mathrm{x}-7 \mathrm{y}, 4 \mathrm{x}+3 \mathrm{y}), \beta=\left\{\mathrm{u}_{1}, \mathrm{u}_{2}\right\}=\{(1,3),(2,5)\}$.
Find $[\mathrm{T}]_{\beta}$ and verify that $[\mathrm{T}]_{\beta}[\mathrm{v}]_{\beta}=[\mathrm{T}(\mathrm{v})]_{\beta}$ for $\mathrm{v}=(4,-3)$.

## Finding matrix representations - method

- we restrict to a linear operator $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{V}$
- the matrix respresentation has to be square [why?]
- to find a matrix representation of $T$ with respect to a basis $\beta=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ of $V$
- find a formula to express any vector $\mathrm{v} \in \mathrm{V}$ as a linear combination of basis vectors $u_{1}, \mathrm{u}_{2}, \ldots, u_{n}$ [convenient]
- for each basis vector $u_{k}$ find $T\left(u_{k}\right)$ and express it as a linear combination of basis vectors $u_{1}, u_{2}, \ldots, u_{n}$
- arrange these coordinates for $T\left(u_{k}\right)$ as the columns of a matrix $[T]_{\beta}$
- this $[T]_{\beta}$ is the required matrix representation of $T$ with respect to $\beta$


## Example: Matrix representation in $\mathrm{R}^{3}$

[Problem 6.5] T $(x, y, z)=(2 y+z, x-4 y, 3 x), \beta=\left\{u_{1}, u_{2}, u_{3}\right\}=\{(1,1,1)$,
$(1,1,0),(1,0,0)\}$. Find $[\mathrm{T}]_{\beta}$ and verify that $[\mathrm{T}]_{\beta}[\mathrm{v}]_{\beta}=[\mathrm{T}(\mathrm{v})]_{\beta}$ for any v .

## Connection with matrix operators

- if $T_{A}$ is a matrix transformation on $R^{n}$ the matrix representation of $\mathrm{T}_{\mathrm{A}}$ with respect to the standard basis $\varepsilon=\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \ldots, \mathrm{e}_{n}\right\}$ is simply the matrix A
- in fancy notation we have $\left[\mathrm{T}_{A}\right]_{\varepsilon}[\mathrm{v}]_{\varepsilon}=[\mathrm{Av}]_{\varepsilon}$ for $v \in R^{n} \ldots$. or just $\left[T_{A}\right] v=A v$ where the standard basis is understood [assumed]
- in general you can drop the subscript that tells you the basis if it is obvious....but if any doubt it's best for clarity to...
- leave the subscript in, or
- write out the linear combinations of basis vectors explicitly as in the text solutions [e.g. problems 6.5,6.6 etc]
- whenever we write " $T_{A}$ " and give the matrix $A$ we are assuming the standard basis is being used


## ...Example: problem 6.6 cont'd

## 2. Changing basis

- suppose we have two different bases for V :
- the old basis $\beta=\left\{\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}\right\}$ and...
- the new basis $\beta^{\prime}=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$
- since $\beta$ is a basis each new basis vector $v_{i}$ can be expressed as a unique l.c. of old basis vectors in $\beta$ :

$$
\begin{gathered}
v_{1}=a_{11} u_{1}+a_{12} u_{2}+\ldots+a_{1 n} u_{n} \\
v_{2}=a_{21} u_{1}+a_{22} u_{2}+\ldots+a_{2 n} u_{n} \\
\ldots \ldots \ldots \\
v_{n}=a_{n 1} u_{1}+a_{n 2} u_{2}+\ldots+a_{n n} u_{n}
\end{gathered}
$$

- recall the coordinates of each new $v_{i}$ with respect to the old basis $\beta$ are just $\left[\mathrm{v}_{\mathrm{i}}\right]_{\beta}=\left[\overline{\mathrm{a}_{\mathrm{i}}}, \mathrm{a}_{\mathrm{i} 2}, \ldots, \mathrm{a}_{\mathrm{in}}\right]_{\beta}$


## Changing basis

- arrange these coordinate vectors as the columns of a matrix: $P=\left[\left[v_{1}\right]_{\beta}\left|\left[v_{2}\right]_{\beta}\right| \cdots \mid\left[v_{n}\right]_{\beta}\right]$

$$
=\left[\begin{array}{r|r|r|r}
a_{11} & a_{21} & \cdots & a_{n 1} \\
a_{12} & a_{22} & \cdots & a_{n 2} \\
\vdots & \vdots & \cdots & \vdots \\
a_{1 n} & a_{2 n} & \cdots & a_{n n}
\end{array}\right\rfloor
$$

- P must be invertible [why?]
- P gives a formula to change the coordinates of a vector from the new basis back to the old basis:

$$
[\mathrm{w}]_{\beta}=\mathrm{P}[\mathrm{w}]_{\beta^{\prime}}
$$

- to go the other way [new from old] we use $\mathrm{P}^{-1}$ :

$$
[\mathrm{w}]_{\beta^{\prime}}=\mathrm{P}^{-1}[\mathrm{w}]_{\beta}
$$

## Terminology alert

- P expresses the new basis vectors in terms of the old ... hence its name "change of basis matrix from old to new" but...
- ... it's $\mathrm{P}^{-1}$ that converts coordinates in the old basis into coordinates expressed in the new basis
- unfortunately this terminology is not standard and can be confusing
- so be careful!
- the change of basis matrix $P$ from the standard basis to a new basis $\beta$ consists of the vectors of $\beta$ arranged as columns
- this works only when the old basis is the standard basis

Example: changing basis from standard
[Example 6.6-6.7] Consider the standard basis $\varepsilon=\left(\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{3}\right)$ and a new basis $\beta=\left\{\mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{u}_{3}\right\}=\{(1,0,1),(2,1,2),(1,2,2)\}$. Find (a) the change of basis matrix P from $\varepsilon$ to $\beta$ and vice versa (b) the coordinates of the vector $(1,3,5)$ with respect to the new basis.

## Changing basis - summary of method

- to change basis between ...
old basis $\beta=\left\{\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{n}\right\}$ and
new basis $\beta^{\prime}=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$
- find a formula to express any vector $v \in V$ as a linear combination of basis vectors $u_{1}, u_{2}, \ldots, u_{n}$ [convenient]
- for each basis vector $v_{k}$ find the $\beta$ coordinates $\left[v_{k}\right]_{\beta}$
- arrange these $\beta$ coordinates for the $v_{k}$ 's as the columns of the matrix $P$
- the inverse $\mathrm{P}^{-1}$ is the matrix that converts old $\beta$ coordinates into new $\beta^{\prime}$ coordinates:

$$
[\mathrm{w}]_{\beta^{\prime}}=\mathrm{P}^{-1}[\mathrm{w}]_{\beta}
$$

## Example: changing basis in $\mathrm{R}^{2}$

[problem 6.17] Old basis $\beta=\left\{\mathrm{u}_{1}, \mathrm{u}_{2}\right\}=\{(1,-2),(3,-4)\}$ and new basis $\beta^{\prime}=\left\{v_{1}, v_{2}\right\}=\{(1,3),(3,8)\}$. Find the change of basis matrix $P$ and verify that $\mathrm{P}[\mathrm{w}]_{\beta^{\prime}}=[\mathrm{w}]_{\beta}$ for any vector w .
.....Example: problem 6.17 cont'd
.....Example: problem 6.17 cont'd
3. Changing basis in a matrix representation

- bases old $\beta$ and new $\beta^{\prime}$ \& change of basis matrix P
- for a linear operator $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{V}$ the matrix representation with respect to the new basis $\beta^{\prime}$ is

$$
[\mathrm{T}]_{\beta}=\mathrm{P}^{-1}[\mathrm{~T}]_{\beta} \mathrm{P}
$$

- if $A$ and $B$ are matrix representations of $T$ with respect to different bases then there is an invertible matrix $P$ so that

$$
\mathrm{B}=\mathrm{P}^{-1} \mathrm{AP}
$$

- matrices related in this way are called similar
- this procedure is often very useful in practice to find a particularly simple form of the matrix representation, e.g. a diagonal matrix [Unit IV]

Unit III - Linear Maps
64

Why does the change of basis formula work?

- let $\mathrm{v} \in \mathrm{V}$ be any vector. Then we have:
$\mathrm{P}^{-1}[\mathrm{~T}]_{\beta} \mathrm{P} \cdot\left[\mathrm{VV}_{\beta^{\prime}}=\mathrm{P}^{-1}[\mathrm{~T}]_{\beta} \cdot \mathrm{P}[\mathrm{v}]_{\beta^{\prime}}\right.$
$=\mathrm{P}^{-1}[\mathrm{~T}]_{\beta} \cdot[\mathrm{V}]_{\beta}$
$=\mathrm{P}^{-1} \cdot[\mathrm{~T}]_{\beta}[\mathrm{V}]_{\beta}$
$=\mathrm{P}^{-1} \cdot[\mathrm{~T}(\mathrm{v})]_{\beta}$
$=[\mathrm{T}(\mathrm{v})]_{\beta^{\prime}}$
$=[\mathrm{T}]_{\beta^{\prime}} \cdot[\mathrm{V}]_{\beta^{\prime}}$
- so $\mathrm{P}^{-1}[\mathrm{~T}]_{\beta} \mathrm{P}=[\mathrm{T}]_{\beta}$. as required

Example: linear operators and change of basis
[problem 6.23] The linear operator $T$ is defined on $R^{2}$ by the formula $T(x, y)=(5 x-y, 2 x+y)$. The old basis is the standard basis $\varepsilon$ and the new basis is $\beta=\left\{\mathrm{u}_{1}, \mathrm{u}_{2}\right\}=\{(1,4),(2,7)\}$. Find (a) the two change of basis matrices P and $\mathrm{P}^{-1}$, (b) $[\mathrm{T}]_{\varepsilon}$ and (c) $[\mathrm{T}]_{\beta}$

Example: matrix representations change of basis
[problem 6.25] The linear operator $T$ is defined on $R^{3}$ by the formula $T(x, y, z)=(x+3 y+z, 2 x+5 y-4 z, x-2 y+2 z)$. Find the matrix $B$ which represents T with respect to the basis $\beta=\left\{\mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{u}_{3}\right\}=$ $\{(1,1,0),(0,1,1),(1,2,2)\}$.

## Matrix representations: wrap-up

$\mathrm{T}: \mathrm{V} \rightarrow \mathrm{V}$ a linear operator. $\beta=\left\{\mathrm{u}_{1}, \ldots \mathrm{u}_{\mathrm{n}}\right\}$ a basis of V . $\beta^{\prime}=\left\{\mathrm{v}_{1}, \ldots \mathrm{v}_{\mathrm{n}}\right\}$ another basis of V .

1. The matrix representation of $T$ with respect to $\beta$ is the matrix $[\mathrm{T}]_{\beta}$

- arrange the coordinate vectors $\left[T\left(\mathrm{u}_{\mathrm{i}}\right)\right]_{\beta}$ as columns for $[\mathrm{T}]_{\beta}$
- for any vector w we have $[\mathrm{T}(\mathrm{w})]_{\beta}=[\mathrm{T}]_{\beta}[\mathrm{w}]_{\beta}$

2. The change of basis matrix from $\beta$ to $\beta^{\prime}$ coordinates is the matrix $P$

- arrange the coordinates of $\left[\mathrm{v}_{\mathrm{i}}\right]_{\beta}$ as columns for P
- the coordinates of a vector $w$ with respect to the new basis $\beta^{\prime}$ are given by $[\mathrm{w}]_{\beta^{\prime}}=\mathrm{P}^{-1}[\mathrm{w}]_{\beta}$

3. The matrix representation of $T$ with respect to the new basis $\beta^{\prime}$ is given by $[\mathrm{T}]_{\beta^{\prime}}=\mathrm{P}^{-1}[\mathrm{~T}]_{\beta} \mathrm{P}$
