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Unit III - Linear Mappings

• linear map(ping)s, transformations, operators

• kernel and image of a linear mapping

– rank and nullity

• matrix transformations

• non-singular and invertible maps

• matrix representation of a general linear map

• change of basis

• similarity relationship
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Several matrix threads converging....

We use matrices in three separate [but related] contexts

that must be kept clear....

1. As vectors in the vector space Mm,n of matrix
addition and scalar multiplication

2. To generate row and column spaces
– examining linear independence of vectors in Rn

– in applications related to linear systems [last unit]

3. To define and/or represent linear mappings
between vector spaces

– this application motivates the matrix product definition

– we study linear mappings in this unit....
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The basic definition

• V & U are vector spaces over the same scalars

• a function f: V!U is a linear mapping if it preserves
the vector space operations

• this means that for v,w"V and scalar k ...

 f(v+w) = f(v) + f(w)

    f(kv) = kf(v)

• alternative terminology
– linear transformation [particularly when f: Rn!Rm]

– linear operator when f: V ! V [same v.s.]

– linear map

– linear function
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Example: linear maps

[Problem 5.9] Show that T: R2 ! R2 defined by T(x,y) = (x+y, x) is a

linear map.
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Image of a linear map

• the image (range) of T is a subspace of U ....

T(V) = im(T) = {u"U | u = T(v) for some v "V}

T

v

T(v)
U

V
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Kernel of a linear map

• for any linear map T(0V) = 0U

– i.e. the zero vector in V maps to the zero vector in U]

• the kernel of T is a subspace of V ....

  ker(T) = {v"V | T(v) = 0}

Tv

U
V

0 0
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Some important linear maps

• the zero map T0:V!U defined by T0(v) = 0

• the identity operator TI :V!V defined by TI(v) = v

• a dilation [k>1] and contraction [0<k<1] operator
T :V!V defined by T(v) = kv

– re-visit this idea when we’ve studied eigenvalues [unit IV]

• a projection operator T: Rn!W = a subspace of Rn

– R3 onto the xy-plane defined by T(x,y,z) = (x,y,0)

– R3 onto the z-axis defined by T(x,y,z) = (0,0,z)
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Some other important linear maps

• a reflection operator T: Rn ! Rn

– e.g. T(x,y,z) = (-x,y,z) reflection in the yz-plane

• a rotation operator T: R2 ! R2

– T(x,y) = (x cos# - y sin#, x sin# + y cos#) rotates (x,y) by
angle # counter-clockwise

• if B is a basis of V the coordinate representation is
T: V! Rn defined by T(v) = [v]B = the coordinates of
v with respect to B
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Examples: linear maps of function spaces

• T: Pn!Pn+1 defined by (T(p))(t) = t p(t) is a linear
map

• the differentiation map D: C1[-","] ! F [-","]
defined by (D(f))(x) = f'(x) the derivative function

• the integration map J: C0[-","] ! C1 [-","] defined

by (J(f))(x) =
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Non-examples: map that are NOT linear

• T: Mnn!R defined by T(A) = det(A)

– not linear because det(A+B) ! det A + det B

• T: R3 ! R defined by T(x,y,z) = x2+y2+z2

– not linear because T(kv) = k2T(v)

• a translation operator T: R2 ! R2 defined by
T(x,y) = (x+2,y-5)

– not linear because T(0) = (2,-5) ! (0,0)

• the operator T: R2 ! R2 defined by T(x,y) = (xy,x)

– not linear because T(v+w) ! T(v) + T(w)

Unit III - Linear Maps 11

Composition of mappings

• let T1: V
 ! U and T2: U

 ! W be linear maps

• the composition of the two maps is the map

defined by

• the composition of two linear maps is a linear map
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Matrix transformations

• for any m$n matrix A we can define a matrix
transformation  TA: Rn ! Rm by the matrix product
TA(v) = Av

– the identity map corresponds to the identity matrix

– the zero map corresponds to the zero matrix

• let A be m$p and B be p$n matrices

• the composition of the two linear transformations
TA: Rp ! Rm and TB: Rn ! Rp is TAB: Rn ! Rm

• so composition of linear transformations
corresponds to the product of their matrices
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Example: matrix transformations

[Problem 5.10] Use matrices to show that T: R3 ! R2 defined by

T(x,y,z) = (x+y+z, 2x-3y+4z) is a linear map.
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Using bases to define transformations

• let {v1, ... vn} be a basis of V and {u1, ... un} any
vectors in U

• define a mapping T: V ! U by

T(v) =  a1u1 + ... + anun

  where v = a1v1 + ... + anvn is expressed in terms of

  the given basis

• this completely characterizes a unique linear map
T: V ! U in terms of its action on a basis:

    T(v1) = u1, T(v2) = u2, ..., T(vn) = un

• to show this take v = a1v1 + ... + anvn and
w = b1v1 + ... + bnvn

• we have....
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....Using bases to define transformations

• T(v+w) = T[(a1+ b1)v1 + ... + (an+ bn)vn]

        = (a1+ b1)u1 + ... + (an+ bn)un

            = (a1u1 + ... + anun) + (b1u1 + ... + bnun)

        = T(v) + T(w)

•   T(kv) = T(ka1v1 + ... + kanvn)

        = ka1u1 + ... + kanun

            = k(a1u1 + ... + anun)

        = kT(v)

• so the mapping is linear

• it is also easy to show that putting T(vi) = ui defines
a unique map T [see problem 5.13]
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Example: Using bases to define a linear map

[Problem 5.14] Find the unique linear map T: R2 ! R2 so that

T(1,2) = (2,3) and T(0,1) = (1,4).
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Example: Using bases

(a) Find the unique linear map T: R3 ! R2 so that T(1,1,1) = (1,0),

T(1,1,0) = (2,-1), T(1,0,0) = (4,3)  [Translation: Find a formula for

T(x,y,z)] (b) Evaluate T(2,-3,5).
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.....Example: Using bases
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The kernel and image of a linear map

• T: V ! U is a linear map ....

• T(V) is a subspace of U .... [the image of T]

• ker(T) is a subspace of V .... [the kernel of T]

Don’t get confused about this point!
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Finding the image of a linear map

• if {v1, ..., vn} span V and T: V ! U is a linear map

then {T(v1), ..., T(vn)} span the image T(V)
– let u " T(V)

– then u = T(v) for some v " V

– but v = a1v1+ ... + anvn

– so u = T(a1v1+ ... + anvn) = a1T(v1)+ ... + anT(vn)

• so a   l i n e a r   map preserves l i n e a r

combinations of vectors
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Finding the image of a matrix transformation

• for a matrix transformation TA : Rn!Rm the
image TA(Rn) is precisely the column space of A

– consider R3 and take the standard basis vectors e1,e2,e3

– so TA(e2) = C2 the second column of A

– in general TA(ei) = Ci the ith column of A

– since the standard basis vectors span Rn the columns of A
must span the image TA(Rn) as per slide 20 result
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The rank of a linear map

• the rank of a linear map T: V ! U is the dimension

of its image T(V)

• if TA: Rn ! Rm is a matrix transformation the rank of

TA is the rank of the matrix A

– TA(Rn) is just the column space of A [slide 21] so the two

concepts coincide
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Example: image of a linear map

[Text example 5.9] find a basis for the image of T: R4!R3 defined

by T(x,y,z,t) = (x-y+z+t, 2x-2y+3z+4t, 3x-3y+4z+5t)
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Finding the image of a linear map

• this example illustrates something important

• even though a linear map preserves linear

combinations of vectors ....

• .... a linear map does NOT preserve linear

independence in general

• so a basis of V does NOT necessarily map to a

basis of the image T(V)
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Example: image of a linear map

[Problem 5.16] Find a basis for the image of T: R4!R3 defined by

T(x,y,z,t) = (x-y+z+t, x+2z-t, x+y+3z-3t)
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Example: image of a linear map

[Problem 5.17] find a basis for the image of T: R3!R3 defined by

T(x,y,z) = (x+2y-z, y+z, x+y-2z)
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The nullity of a linear map

• the nullity of a linear map T: V ! U is the

dimension of its kernel ker(T)

• if TA: Rn ! Rm is a matrix transformation the kernel

ker(TA) is called the nullspace of A

• ker(TA) consists of all vectors v for which Av = 0....

so to find a basis for ker(TA) you just solve this

system of linear equations
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A VERY important result

• for a linear map T: V!U we have

rank T + nullity T = dim V
• for a matrix transformation TA : Rn!Rm this translates

to a matrix result about A

  rank A + nullity A = n

These relationships are central to

all of linear algebra
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Examples: kernel of a linear map

[Text example 5.9] find a basis for the kernel of T: R4!R3

defined by T(x,y,z,t) = (x-y+z+t, 2x-2y+3z+4t, 3x-3y+4z+5t)
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Examples: kernel of a linear map

[Problem 5.16] Find a basis for the kernel of T: R4!R3 defined

by T(x,y,z,t) = (x-y+z+t, x+2z-t, x+y+3z-3t)
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Examples: kernel of a linear map

[Problem 5.17] Find a basis for the kernel of T: R3!R3 defined

by T(x,y,z) = (x+2y-z, y+z, x+y-2z)
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Non-singular maps

• a map T: V ! U is non-singular if ker T = {0}

• equivalently a map is singular if the image of some
non-zero vector is zero as shown below....

T U
V

v 0

0
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Illustrative examples

• examples of singular maps:
– the zero map is singular

– a projection map is singular, e.g. T(x,y,z) = (x,y,0) because
T(0,0,z) = (0,0,0) for any z

– the differentiation operator D on Pn is singular because all
constant polynomials get mapped to the zero polynomial

– the maps in example 5.9 and problems 5.16&5.17 [slides
30-31] are all singular because they have non-zero kernels

• examples of non-singular maps:
– the identity, dilation, contraction, and rotation maps are all

non-singular

– the map T: R2!R3 defined by T(x,y) = (x+y, x-y, x+y) is
non-singular [T(x,y) = (0,0,0) implies (x,y) = (0,0)]

– any matrix transformation TA : R
n!Rm for which rank A

= n is non-singular [why?]
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• a map T: V ! U is one-to-one if T(v) = T(w) implies
v = w

• obviously a singular map cannot be one-to-one
but...not all non-singular maps are one-to-one

• maps as shown below are not one-to-one

One-to-one maps

T U
V

v u

w
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Non-singular linear maps

• a linear map T: V ! U is one-to-one if and only if it
is non-singular

– T one-to-one implies only the zero vector maps to the zero
vector of U

– T non-singular and T(v) = T(w) implies
T(v - w) = T(v) - T(w) = 0 so v - w = 0 or v = w

• a non-singular linear map T: V ! U preserves the
linear independence of vectors in the images

– suppose v1, v2, ... ,vn are linearly independent

– suppose a1T(v1) + ... + anT(vn) = 0

– T is linear so T(a1v1 + ... + anvn) = 0

– T is non-singular so a1v1 + ... + anvn = 0

– but v1, v2, ... ,vn are linearly independent so all ai = 0
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Onto maps

• a map T: V ! U is onto if the range T(V) = U

• in other words ‘the images of vectors in V cover the
entire space U’

T

v

T(v)
U=T(V)

V
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Onto linear maps

• a non-singular linear map T: V ! U is automatically
one-to-one but it may not be onto....

• example
– define the map T: Pn ! Pn+1 as ‘multiplication by t’ [slide 9]

– T(a0 + a1t + a2t
2 + ... + ant

n) = a0t + a1t
2 + a2t

3 + ... + ant
n+1

– T is a non-singular linear map but.....

– T is not onto because the constant polynomials in Pn+1 are
not in the image of T

• in general for T: V ! U if dim U > dim V it is
possible to define one-to-one (non-singular) maps
that aren’t onto

• the problem here is that there is ‘more room in U
than V’ so there can be vectors in U not in T(V)
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Non-singular linear maps again

• the situation is fixed when U and V have the same
finite dimension.....

• provided dim V = dim U a linear map T: V ! U is
onto if and only if it is non-singular

– if T is onto then T(V) = U % rank T = dim U = n say,

so nullity T = dim V - rank T = n - n = 0

so ker T = {0}, i.e. T is non-singular

– if T is non-singular then nullity T = 0

% rank T = dim V - nullity T = n - 0 = n,

i.e. dim T(V) = n = dim U,

so we must have T(V) = U [why?], i.e. T is onto
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Non-singular linear operators

• in particular, for linear operators T: V ! V all of the
following are equivalent

– T is non-singular

– T is one-to-one

– T is onto

• further in particular, these results apply in the case
of matrix transformations TA: Rn ! Rn, i.e. for which
A is square...all of the following are equivalent

– Av = 0 has only the zero solution v = 0 [non-singular]

– any vector b"Rn can be written b = Ax for some x"Rn [onto]

– rank A = n [onto]
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Invertible maps

• in order to invert a map T: V ! U we need to define
a map T-1: U ! V which reverses T

• defining T-1 in this way by un-doing the action of T
requires that all vectors in U must be images of

– some vector in V [T is onto]

– only one vector in V [T is one-to-one]

• i.e. to be invertible the map has to be one-to-one
and onto U [called an isomorphism]

• formal definition: a map T: V ! U is invertible if
there is another map T-1: U ! V so that                is
the identity operator on V and                is the
identity operator on U
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Invertible matrix transformations

• if the linear map is a matrix transformation
TA: Rn ! Rm it is invertible precisely when the
matrix A is invertible

• the inverse map is defined by

• A must be a square matrix [slides 38-39]

• so a square matrix is invertible if and only if it is
non-singular...the two concepts coincide
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Example: non-singular non-invertible linear map

[Problem 5.26] T: R2 ! R3 defined by T(x,y) = (x+y, x-2y, 3x+y).
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Example: invertible matrix transformation

[Problem 5.40] Is the operator T: R3 ! R3 defined by

T(x,y,z) = (2x, 4x-y, 2x+3y-z) invertible? Find the inverse.
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Plaine English summary 1

• T: V ! U any old map

• a non-singular map
– no non-zero vector maps to the zero vector

• a one-to-one map
– two different vectors don’t map to the same image vector

• an onto map
– there are no vectors in U that aren’t the image of some

vector in V

• an isomorphism
– both one-to-one and onto

• an invertible map
– must be an isomorphism to define an inverse map
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Plaine English summary 2

•  a linear map T: V ! U

– preserves linear combinations

– a spanning set for V maps to a spanning set for the image

– is completely characterized by its action on a basis of V

• a non-singular linear map
– must also automatically be one-to-one

– preserves the linear independence of vectors in the image
vectors

• a non-singular linear map with dim U = dim V
– must also automatically be onto

– is an isomorphism

– is invertible

• for linear operators all of the terms are equivalent
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Matrix representations: to do list

1. How do we construct a matrix representation A for
a general linear transformation T:V!W?

– we’ll restrict to the case of a linear operator where T:V!V,
but only to keep things a little simple

– in this case the matrix A will be square and....

– T(v) = A[v] where [v]"Rn are coordinates of v"V

2. How do the coordinates of a vector change when
we use a different basis?

3. How does the matrix representation of a linear
operator change if we change the basis?
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1. Matrix representation of a linear operator

• let V be a finite-dimensional v.s.

• choose a basis & = {u1, ..., un} of V..notation alert :-(

• a linear operator T:V!V is completely determined
by its action on a basis of V: T(u1), ..., T(un)

• these are vectors in V, so they can be expressed in
terms of the basis &:

T(u1) = a11u1 + a12u2 + ... + a1nun

T(u2) = a21u1 + a22u2 + ... + a2nun

. . . . . . . . . . .

T(un) = an1u1 + an2u2 + ... + annun

• recall the coordinates of T(ui) with respect to & are
just [T(ui)]& = [ai1, ai2, ..., ain]&
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Matrix representation of a linear operator

• arrange these coordinate vectors as the columns of a
matrix:

• this is called the matrix representation of T with
respect to the basis &

• we can use this matrix [T]& and coordinate vectors in
Rn instead of T and vectors in V because:

[T(v)]& = [T]& [v]&
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Example: Matrix representation in R2

[Problem 6.2] T(x,y) = (2x-7y, 4x+3y), & = {u1,u2} = {(1,3), (2,5)}.

Find [T]& and verify that [T]& [v]& = [T(v)]& for v = (4,-3).

Unit III - Linear Maps 50

Finding matrix representations - method

• we restrict to a linear operator T:V!V

– the matrix respresentation has to be square [why?]

• to find a matrix representation of T with respect to a
basis & = {u1,u2, ... , un} of V

– find a formula to express any vector v"V as a linear
combination of basis vectors u1,u2, ... , un [convenient]

– for each basis vector uk find T(uk) and express it as a linear
combination of basis vectors u1,u2, ... , un

– arrange these coordinates for T(uk) as the columns of a
matrix [T]&

– this [T]& is the required matrix representation of T with
respect to &
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Example: Matrix representation in R3

[Problem 6.5] T(x,y,z) = (2y+z, x-4y, 3x), & = {u1, u2, u3} = {(1,1,1),

(1,1,0), (1,0,0)}. Find [T]& and verify that [T]& [v]& = [T(v)]& for any v.
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.....Example: problem 6.5 (cont’d)
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Connection with matrix operators

• if TA is a matrix transformation on Rn the matrix
representation of TA with respect to the standard
basis ' = {e1, e2, ..., en} is simply the matrix A

• in fancy notation we have [TA]' [v]' = [Av]' for
v"Rn.... or just [TA] v = Av where the standard basis
is understood [assumed]

• in general you can drop the subscript that tells you
the basis if it is obvious....but if any doubt it’s best
for clarity to...

– leave the subscript in, or

– write out the linear combinations of basis vectors explicitly
as in the text solutions [e.g. problems 6.5,6.6 etc]

• whenever we write “TA” and give the matrix A we
are assuming the standard basis is being used
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Example: Matrix operator in R3

[Problem 6.6] TA is a linear operator on R3 defined by the matrix:

& = {u1, u2, u3} = {(1,1,1), (0,1,1), (1,2,3)} is
a basis of R3. Find [TA]& and verify that

[TA]& [v]& = [TA(v)]& = [Av]& for any v.
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....Example: problem 6.6 cont’d
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2. Changing basis

• suppose we have two different bases for V:
– the old basis & = {u1,u2, ... , un} and...

– the new basis &´= {v1,v2, ... , vn}

• since & is a basis each new basis vector vi can be
expressed as a unique l.c. of old basis vectors in &:

v1 = a11u1 + a12u2 + ... + a1nun

v2 = a21u1 + a22u2 + ... + a2nun

. . . . . . . . . . .

vn = an1u1 + an2u2 + ... + annun

• recall the coordinates of each new vi with respect to
the old basis & are just [vi]& = [ai1, ai2, ..., ain]&
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Changing basis

• arrange these coordinate vectors as the columns of
a matrix:

• P must be invertible [why?]

• P gives a formula to change the coordinates of a
vector from the new basis back to the old basis:

[w]& 
= P[w]&´

• to go the other way [new from old] we use P-1:

[w]&´ = P-1[w]&
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Terminology alert

• P expresses the new basis vectors in terms of the
old ... hence its name “change of basis matrix from
old to new” but....

• ... it’s P-1 that converts coordinates in the old basis
into coordinates expressed in the new basis

• unfortunately this terminology is not standard and
can be confusing

• so be careful!

• the change of basis matrix P from the standard
basis to a new basis & consists of the vectors of &
arranged as columns

– this works only when the old basis is the standard basis
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Example: changing basis from standard

[Example 6.6-6.7] Consider the standard basis ' = (e1,e2,e3) and a

new basis & = {u1,u2,u3} = {(1,0,1), (2,1,2), (1,2,2)}. Find (a) the

change of basis matrix P from ' to & and vice versa (b) the

coordinates of the vector (1,3,5) with respect to the new basis.
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..... Example: example 6.6-6.7 (cont’d)
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Changing basis - summary of method

• to change basis between ...

 old basis & = {u1,u2, ... ,un} and

new basis &´ = {v1,v2, ... ,vn}
– find a formula to express any vector v"V as a linear

combination of basis vectors u1,u2, ... , un [convenient]

– for each basis vector vk find the & coordinates [vk]&
– arrange these & coordinates for the vk’s as the columns of

the matrix P

– the inverse P-1
 is the matrix that converts old & coordinates

into new &´ coordinates:

 [w]&´ = P-1[w]&
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Example: changing basis in R2

[problem 6.17] Old basis & = {u1,u2} = {(1,-2), (3,-4)} and new basis

&´ = {v1,v2} = {(1,3), (3,8)}. Find the change of basis matrix P and

verify that P[w]&´ = [w]& for any vector w.
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.....Example: problem 6.17 cont’d
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3. Changing basis in a matrix representation

• bases old & and new &´ & change of basis matrix P

• for a linear operator T:V!V the matrix
representation with respect to the new basis &´ is

[ T ]&´= P-1[ T ]& 
P

• if A and B are matrix representations of T with
respect to different bases then there is an invertible
matrix P so that

B = P-1AP

• matrices related in this way are called similar

• this procedure is often very useful in practice to find
a particularly simple form of the matrix
representation, e.g. a diagonal matrix  [Unit IV]
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Why does the change of basis formula work?

• let v"V be any vector. Then we have:

P-1[T]&P • [v]&´ = P-1[T]& • P[v]&´

 = P-1[T]& • [v]&

 = P-1 • [T]& [v]&

 = P-1 • [T(v)]&

 = [T(v)]&´

 = [T]&´ • [v]&´

• so P-1[T]&P = [T]&´ as required
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Example: linear operators and change of basis

[problem 6.23] The linear operator T is defined on R2 by the

formula T(x,y) = (5x-y,2x+y). The old basis is the standard basis '

and the new basis is & = {u1,u2} = {(1,4), (2,7)}. Find (a) the two

change of basis matrices P and P-1, (b) [ T ]' and (c) [ T ]&
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.... Example: problem 6.23 cont’d
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Changing basis in a matrix representation-method

• old basis & = {u1,u2, ... ,un} and new basis &´ =
{v1,v2, ... ,vn}

• T: V!V is a linear operator with matrix
representation [T]&

• to find the new matrix representation [T]&´ of T with
respect to &´ you can

– find the & coordinates [T(vk)]& for each new basis vector
and follow the procedure on slide 50

OR [easier].....

– find the change of basis matrix P and use the formula:

 [ T ]&´ = P-1[ T ]& 
P
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Example: matrix representations change of basis

[problem 6.25] The linear operator T is defined on R3 by the

formula T(x,y,z) = (x+3y+z, 2x+5y-4z, x-2y+2z). Find the matrix B

which represents T with respect to the basis & = {u1,u2,u3} =

{(1,1,0), (0,1,1), (1,2,2)}.
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.... Example:problem 6.25 cont’d
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Matrix representations: wrap-up

T: V!V a linear operator. & = {u1, ... un} a basis of V.

&´ = {v1, ... vn} another basis of V.

1. The matrix representation of T with respect to & is
the matrix [T]&
• arrange the coordinate vectors [T(ui)]& as columns for [T]&
• for any vector w we have [T(w)]& = [T]& [w]&

2. The change of basis matrix from & to &´ coordinates
is the matrix P
• arrange the coordinates of [vi]&  as columns for P

• the coordinates of a vector w with respect to the new basis
&´ are given by [w]&´ = P-1[w]&

3. The matrix representation of T with respect to the

new basis &´ is given by [T]&´ = P-1[T]& P


