Unit lll - Linear Mappings

linear map(ping)s, transformations, operators
kernel and image of a linear mapping
— rank and nullity
matrix transformations
non-singular and invertible maps
matrix representation of a general linear map
change of basis
similarity relationship
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Several matrix threads converging....

We use matrices in three separate [but related] contexts
that must be kept clear....
1. As vectors in the vector space M,, , of matrix
addition and scalar multiplication
2. To generate row and column spaces
— examining linear independence of vectors in R"
— in applications related to linear systems [last unit]
3. To define and/or represent linear mappings
between vector spaces
— this application motivates the matrix product definition
—  we study linear mappings in_this unit....
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The basic definition

V & U are vector spaces over the same scalars
a function f: V—=U is a linear mapping if it preserves
the vector space operations
this means that for v,w&V and scalark ...
f(v+w) = f(v) + f(w)
f(kv) = kf(v)

alternative terminology

linear transformation [particularly when f: R*—=R™]

linear operator when f: V — V [same v.s.]

linear map

linear function
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Example: linear maps

[Problem 5.9] Show that T: R2 — R2 defined by T(x,y) = (x+y, X) is a
linear map.
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Image of a linear map
the image (range) of T is a subspace of U ....
T(V) =im(T) = {u€U | u = T(v) for some v EV}

\Y
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Kernel of a linear map

+ for any linear map T(0,) = 0
— i.e. the zero vector in V maps to the zero vector in U]
+ the kernel of T is a subspace of V ....
ker(T) = {v€V | T(v) = 0}
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Some important linear maps

+ the zero map T,:V—U defined by Ty(v) = 0
+ the identity operator T, :V—V defined by T\(v) = v
* adilation [k>1] and contraction [0<k<1] operator
T :V—V defined by T(v) = kv
— re-visit this idea when we’ve studied eigenvalues [unit [V]
* aprojection operator T: R"~—W = a subspace of R"
— R?®onto the xy-plane defined by T(x,y,z) = (x,y,0)
— R?®onto the z-axis defined by T(x,y,z) = (0,0,z)
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Some other important linear maps

a reflection operator T: R"— R"
- e.g. T(x,y,z) = (-x,y,z) reflection in the yz-plane
a rotation operator T: R2 — R2

- T(x,y) = (x cosf - y sinf, x sinf + y cos0) rotates (x,y) by
angle 6 counter-clockwise

if B is a basis of V the coordinate representation is
T: V— R"defined by T(v) = [v]gz = the coordinates of
v with respect to B
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Examples: linear maps of function spaces

+ T:P,—P,,, defined by (T(p))(t) =t p(t) is a linear
map

« the differentiation map D: C'[-»,»] — F[-%,]
defined by (D(f))(x) = f'(x) the derivative function

« the integration map J: C%-%,] — C'[-=,»] defined

by (J()(x) = ]O " ftnyar
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Non-examples: map that are NOT linear

T: M,,—R defined by T(A) = det(A)
— not linear because det(A+B) # det A + det B
T: R® — R defined by T(x,y,z) = x2+y2+z2
— not linear because T(kv) = k2T(v)
a translation operator T: R2 — R2defined by
T(le) = (X+2!y'5)
— not linear because T(0) = (2,-5) # (0,0)
the operator T: R2 — R2defined by T(x,y) = (xy,x)
— not linear because T(v+w) # T(v) + T(w)
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Composition of mappings

+ letT;:V—=UandT,: U— W be linear maps

+ the composition of the two maps is the map
Tyoly:V — W defined by (7y0T1)(v) = Tu(Ti(v))

» the composition of two linear maps is a linear map

Unit Ill - Linear Maps "

Matrix transformations

for any mxn matrix A we can define a matrix
transformation T,: R"— R™Mby the matrix product
Ta(v) = Av

— the identity map corresponds to the identity matrix

—  the zero map corresponds to the zero matrix
let A be mxp and B be pxn matrices
the composition of the two linear transformations
Ta:RP— RMand Tg: R"— RPis Tpg: R"— R™
so composition of linear transformations
corresponds to the product of their matrices

TyoTg: R — R™
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Example: matrix transformations

[Problem 5.10] Use matrices to show that T: R® — R2 defined by
T(x,y,z) = (x+y+z, 2x-3y+4z) is a linear map.
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Using bases to define transformations

* let{vy, ... v} be a basis of V and {uy, ... u,} any
vectors in U
+ define a mapping T: V — U by
T(v) = aus+ ... +ayu,
where v =a,v, + ... + a,v, is expressed in terms of
the given basis

* this completely characterizes a unique linear map
T:V — U in terms of its action on a basis:

T(vq) = uy, T(vp) = Uy, .., T(vy) =u,
+ toshow thistakev=a,v,+...+a,v,and
w=bv,+ ... +byv,
*+ wehave....
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....Using bases to define transformations

© T(v+w) = T[ag* by + .o+ (@,* byv,]
= (a1+ b1)u1 tot (an+ bn)un
= (ayuy + .. + au,)+ (byug + ..+ bouy)
=T(v) + T(w)

. T(kv) = T(kasv, + ... + ka,v,)
=ka,u, + ... + kayu,
=k(aqus + ... +ayu,)
= KkT(v)

* so the mapping is linear

+ itis also easy to show that putting T(v;) = u; defines

a unique map T [see problem 5.13]

Unit Ill - Linear Maps 15

Example: Using bases to define a linear map

[Problem 5.14] Find the unique linear map T: R2 — R2 so that
T(1.2) =(2,3) and T(0,1) = (1,4).
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Example: Using bases

(a) Find the unique linear map T: R® — R? so that T(1,1,1) = (1,0),
T(1,1,0) = (2,-1), T(1,0,0) = (4,3) [Translation: Find a formula for
T(x,y,z)] (b) Evaluate T(2,-3,5).
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..... Example: Using bases
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The kernel and image of a linear map
* T:V—=Uisalinear map....

* T(V)is asubspace of U .... [the image of T]
+ ker(T)is a subspace of V .... [the kernel of T]

Don’t get confused about this point!
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Finding the image of a linear map

s if{vqy, ..., votspanVand T: V — U is a linear map
then {T(v4), ..., T(v,)} span the image T(V)
- letueT(V)
— thenu=T(v)forsomeveEV
- butv=ayv+..+ay,
— sou=T(av+ ... +ayv,) =aT(v)+ ... +a,T(v,)
* soa linear mappreserveslinear
combinations of vectors
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Finding the image of a matrix transformation

+ for a matrix transformation T, : R"—=R™ the
image T,(R") is precisely the column space of A
— consider R3®and take the standard basis vectors e,,e,,e,

ay; aip ap 0 a2
Talea) =Ta(0,1,0) = | az1 ax ax L|=| an

a1 az as3 0 @32
— 50 Tu(e,) = C, the second column of A

— ingeneral T,(e)) = C, the ith column of A

— since the standard basis vectors span R" the columns of A
must span the image T,(R") as per slide 20 result
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The rank of a linear map

* therank of alinear map T: V — U is the dimension
of its image T(V)

+ if T,: R" = R™Mis a matrix transformation the rank of
T, is the rank of the matrix A

—  Ta(R") is just the column space of A [slide 21] so the two
concepts coincide

Unit Il - Linear Maps 22

Example: image of a linear map

[Text example 5.9] find a basis for the image of T: R*—R? defined
by T(x,y,z,t) = (x-y+z+t, 2x-2y+3z+4t, 3x-3y+4z+5t)
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Finding the image of a linear map

+ this example illustrates something important

* even though a linear map preserves linear
combinations of vectors ....

* ...alinear map does NOT preserve linear
independence in general

* so a basis of V does NOT necessarily map to a
basis of the image T(V)
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Example: image of a linear map

[Problem 5.16] Find a basis for the image of T: R*—R?3defined by
T(X,y,z,t) = (x-y+z+t, x+2z-t, x+y+3z-3t)
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Example: image of a linear map

[Problem 5.17] find a basis for the image of T: R3—R3 defined by
T(x,y,z) = (X+2y-z, y+z, x+y-2z)

Unit Il - Linear Maps 26

The nullity of a linear map

» the nullity of alinear map T: V — U is the
dimension of its kernel ker(T)

+ if T,: R" = R™Mis a matrix transformation the kernel
ker(T,) is called the nullspace of A

+  ker(T,) consists of all vectors v for which Av = 0....
so to find a basis for ker(T,) you just solve this
system of linear equations
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A VERY important result
« foralinear map T: V—=U we have

rank T + nullity T = dim V
+  for a matrix transformation T, : R"™—=R™ this translates
to a matrix result about A

rank A + nullity A=n

These relationships are central to
all of linear algebra
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Examples: kernel of a linear map

[Text example 5.9] find a basis for the kernel of T: R*—R3
defined by T(x,y,z,t) = (x-y+z+t, 2x-2y+3z+4t, 3x-3y+4z+5t)
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Examples: kernel of a linear map

[Problem 5.16] Find a basis for the kernel of T: R*—R?3 defined
by T(x,y,z,t) = (x-y+z+t, x+2z-t, x+y+3z-3t)
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Examples: kernel of a linear map

[Problem 5.17] Find a basis for the kernel of T: R3—R?3 defined
by T(x,y,z) = (x+2y-z, y+z, x+y-2z)
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Non-singular maps

amap T:V — Uis non-singular if ker T = {0}
equivalently a map is singular if the image of some
non-zero vector is zero as shown below....
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lllustrative examples

*  examples of singular maps:
—  the zero map is singular
— aprojection map is singular, e.g. T(x,y,z) = (x,y,0) because
T(0,0,z) = (0,0,0) for any z
— the differentiation operator D on P, is singular because all
constant polynomials get mapped to the zero polynomial

—  the maps in example 5.9 and problems 5.16&5.17 [slides
30-31] are all singular because they have non-zero kernels

One-to-one maps
amap T:V — U is one-to-one if T(v) = T(w) implies
V=w
obviously a singular map cannot be one-to-one
but...not all non-singular maps are one-to-one
maps as shown below are not one-to-one

\Y
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*  examples of non-singular maps:

— the identity, dilation, contraction, and rotation maps are all

non-singular
— the map T: R2—R3 defined by T(x,y) = (x+y, X-y, X+y) is

non-singular [T(x,y) = (0,0,0) implies (x,y) = (0,0)]
— any matrix transformation T, : R"—=R™ for which rank A

= n is non-singular [why?]
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Non-singular linear maps Onto maps

* alinear map T: V — U is one-to-one if and only if it
is non-singular
— T one-to-one implies only the zero vector maps to the zero
vector of U
— T non-singular and T(v) = T(w) implies
T(v-w)=T(v)-T(w)=0sov-w=0o0rv=w
* anon-singular linear map T: V — U preserves the
linear independence of vectors in the images
—  suppose vy, V,, ... v, are linearly independent
— suppose a;T(v,) +..+a,T(v,)=0
— Tislinearso T(av, +...+a.v,)=0
— Tisnon-singularsoa,v, +...+a,v,=0
- butv,,v,, ...,v, are linearly independent so all a, = 0

Unit Il - Linear Maps 35

amap T:V — U is onto if the range T(V) = U

in other words ‘the images of vectors in V cover the
entire space U’

v
U=T(V)
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Onto linear maps

a non-singular linear map T: V — U is automatically
one-to-one but it may not be onto....
example
define the map T: P, — P, as ‘multiplication by t’ [slide 9]
T(ag +at+at2+ .. +at) =at+a,t2+a,td+ ... +atm
T is a non-singular linear map but.....

T is not onto because the constant polynomials in P, are
not in the image of T

in general for T: V — U ifdim U > dim V itis
possible to define one-to-one (non-singular) maps
that aren’t onto

the problem here is that there is ‘more room in U
than V'’ so there can be vectors in U not in T(V)
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Non-singular linear maps again

+ the situation is fixed when U and V have the same
finite dimension.....
*+ provideddimV=dimUalinearmap T:V —Uis
onto if and only if it is non-singular
— if Tis ontothen T(V) = U = rank T = dim U = n say,
sonullity T=dimV-rank T=n-n=0
so ker T = {0}, i.e. T is non-singular
— if Tis non-singular then nullity T =0
=rank T=dimV-nullity T=n-0=n,
i.e.dim T(V) =n=dim U,
so we must have T(V) = U [why?], i.e. T is onto
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Non-singular linear operators

in particular, for linear operators T: V — V all of the
following are equivalent

— Tis non-singular
— Tis one-to-one
— Tisonto

further in particular, these results apply in the case
of matrix transformations T,: R" — R", i.e. for which
A is square...all of the following are equivalent

— Av =0 has only the zero solution v = 0 [non-singular]
— any vector bER" can be written b = Ax for some XER" [onto]

— rank A =n [onto]
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Invertible maps

* inordertoinverta map T: V — U we need to define
amap T': U — V which reverses T

« defining T-" in this way by un-doing the action of T
requires that all vectors in U must be images of

— some vector in V [T is onto]
— only one vector in V [T is one-to-one]

* i.e. to be invertible the map has to be one-to-one
and onto U [called an isomorphism]

» formal definition: a map T: V — U is invertible if
there is another map T-: U — V sothat 77'oT s
the identity operatoron Vand To77! isthe
identity operator on U
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Invertible matrix transformations

if the linear map is a matrix transformation
Ta: R"— R™M it is invertible precisely when the
matrix A is invertible

the inverse map is defined by 77" =17,

A must be a square matrix [slides 38-39]

so a square matrix is invertible if and only if it is
non-singular...the two concepts coincide
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Example: non-singular non-invertible linear map
[Problem 5.26] T: R? — R3 defined by T(x,y) = (x+y, x-2y, 3x+y).
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Example: invertible matrix transformation

[Problem 5.40] Is the operator T: R® — R3 defined by
T(x,y,2) = (2%, 4x-y, 2x+3y-z) invertible? Find the inverse.
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Plaine English summary 1

T:V — U any old map
a non-singular map
— no non-zero vector maps to the zero vector
a one-to-one map
— two different vectors don’t map to the same image vector
an onto map

— there are no vectors in U that aren’t the image of some
vector in V

an isomorphism
—  both one-to-one and onto

an invertible map
— must be an isomorphism to define an inverse map
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Plaine English summary 2

. alinearmap T:V—U
—  preserves linear combinations
— aspanning set for V maps to a spanning set for the image
— is completely characterized by its action on a basis of V
* anon-singular linear map
— must also automatically be one-to-one
— preserves the linear independence of vectors in the image
vectors
* anon-singular linear map with dim U =dim V
— must also automatically be onto
— is an isomorphism
— isinvertible
«  for linear operators all of the terms are equivalent
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1.

2.

3.

Matrix representations: to do list

How do we construct a matrix representation A for
a general linear transformation T:V—=W?

—  we'll restrict to the case of a linear operator where T:V—V,

but only to keep things a little simple

— in this case the matrix A will be square and....

—  T(v) = Alv] where [v]IER" are coordinates of v&V
How do the coordinates of a vector change when
we use a different basis?
How does the matrix representation of a linear
operator change if we change the basis?
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1. Matrix representation of a linear operator

+ letV be a finite-dimensional v.s.
+ choose a basis = {uy, ..., u,} of V..notation alert :-(
* alinear operator T:V—V is completely determined
by its action on a basis of V: T(uy), ..., T(u,)
+ these are vectors in V, so they can be expressed in
terms of the basis :
T(uq) =ayuy +agpu, + .. +agU,
T(up) = Uy +ayUy + ... + 8U,
T(uy) = @y +agUp + ... + 8y
+ recall the coordinates of T(u;) with respect to g are
just [T(uls= [@4; @y -s Anlg
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Matrix representation of a linear operator

arrange these coordinate vectors as the columns of a

matrix: [T = [ [T(uv)ls | T (uz)ls |- | [T(un)ls ]
ary | ag1 | - | a1
_ aa | a2 | - | an2
(111; aZn: | Qnn

this is called the matrix representation of T with
respect to the basis 8

we can use this matrix [T], and coordinate vectors in
Rn instead of T and vectors in V because:

[TV =[Tlg VI
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Example: Matrix representation in R2

[Problem 6.2] T(x,y) = (2x-7y, 4x+3y), /3 ={uy,u} ={(1,3), (2,5)}.
Find [T]ﬁ and verify that [T]ﬁ [v]ﬁ = [T(v)]ﬁ for v = (4,-3).
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Finding matrix representations - method

*  we restrict to a linear operator T:V—=V
— the matrix respresentation has to be square [why?]
+ to find a matrix representation of T with respect to a
basis 8 ={u,,uy, ... ,u} of V
— find a formula to express any vector v€V as a linear
combination of basis vectors u,,u,, ..., u, [convenient]

—  for each basis vector u, find T(u,) and express it as a linear
combination of basis vectors uy,u, ..., u,

— arrange these coordinates for T(u,) as the columns of a
matrix [T],

—  this [T],is the required matrix representation of T with
respecf to B
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Example: Matrix representation in R3

[Problem 6.5] T(x,y,z) = (2y+z, x-4y, 3x), [J’ ={uy, Uy, Uz} ={(1,1,1),
(1,1,0), (1,0,0)}. Find [T]ﬁ and verify that [T]ﬁ [v]ﬁ = [T(v)]ﬁ for any v.
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..... Example: problem 6.5 (cont'd)
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Connection with matrix operators

+ if T, is a matrix transformation on R" the matrix
representation of T, with respect to the standard
basis ¢ = {ey, e,, ..., €.} is simply the matrix A

* infancy notation we have [T ], [v], = [Av], for
VER".... or just [T,] v = Av where the standard basis
is understood [assumed]

* in general you can drop the subscript that tells you
the basis if it is obvious....but if any doubt it's best
for clarity to...

— leave the subscript in, or
— write out the linear combinations of basis vectors explicitly
as in the text solutions [e.g. problems 6.5,6.6 etc]

* whenever we write “T,” and give the matrix A we
are assuming the standard basis is being used
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Example: Matrix operator in R3

[Problem 6.6] T, is a linear operator on R? defined by the matrix:

1 -2 1 B={uy, Uy, uzt ={(1,1,1), (0,1,1), (1,2,3)} is
A=|3 -1 0 a basis of R3. Find [T,], and verify that
-2

L4 [Talp Vs = [Ta(V)]; = [AV], for any v.
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....Example: problem 6.6 cont'd
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2. Changing basis

suppose we have two different bases for V:

— the old basis = {u,,u,, ..., u} and...
— the new basis 8= {v,,v,, ..., v}

since S is a basis each new basis vector v; can be
expressed as a unique l.c. of old basis vectors in f:
Vi=anUytagly + .. +agU,
Vo = ApUy + 8yl + ... + 8y,
Vi = 3nqUy + an2U ot AnUn
recall the coordinates of each new v, with respect to
the old basis g are just [v]];= [ayy, @ip, -, Ailg
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Changing basis

+ arrange these coordinate vectors as the columns of

amatrix: p = [ [u)g | [vals |+ | [enls ]
apy | a1 | - | a1
- arz | a2 | - | an2
@n | @2n | - | Gnn

* P must be invertible [why?]
* P gives a formula to change the coordinates of a
vector from the new basis back to the old basis:
[wlg= P[wlg
« to go the other way [new from old] we use P-':
wlg = P'1[W]ﬂ
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Terminology alert

P expresses the new basis vectors in terms of the
old ... hence its name “change of basis matrix from
old to new” but....
... it's P! that converts coordinates in the old basis
into coordinates expressed in the new basis
unfortunately this terminology is not standard and
can be confusing
so be careful!
the change of basis matrix P from the standard
basis to a new basis f consists of the vectors of
arranged as columns

— this works only when the old basis is the standard basis
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Example: changing basis from standard

[Example 6.6-6.7] Consider the standard basis ¢ = (e,,e,,e;) and a
new basis 3 = {u;,u,,us} = {(1,0,1), (2,1,2), (1,2,2)}. Find (a) the
change of basis matrix P from ¢ to  and vice versa (b) the
coordinates of the vector (1,3,5) with respect to the new basis.
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..... Example: example 6.6-6.7 (cont’'d)
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Changing basis - summary of method

* to change basis between ...
old basis 8 = {uy,u,, ... ,u,} and
new basis "= {vy,v,, ... v}
— find a formula to express any vector vE€V as a linear
combination of basis vectors uy,u,, ..., u, [convenient]
—  for each basis vector v, find the g coordinates [v,],

— arrange these g coordinates for the v,’s as the columns of
the matrix P

— the inverse P-'is the matrix that converts old 8 coordinates
into new B coordinates:

[wlg = P [wlg

Unit Il - Linear Maps 61

Example: changing basis in R?

[problem 6.17] Old basis 8 = {u,,u,} = {(1,-2), (3,-4)} and new basis
B ={vy, v} ={(1,3), (3,8)}. Find the change of basis matrix P and
verify that P[w] = [w], for any vector w.
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..... Example: problem 6.17 cont'd
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3. Changing basis in a matrix representation

+ bases old g and new 8’ & change of basis matrix P
» for alinear operator T:V—V the matrix
representation with respect to the new basis g’ is
[T1=P[T]P
+ if A and B are matrix representations of T with

respect to different bases then there is an invertible
matrix P so that

B = P1AP
* matrices related in this way are called similar

»  this procedure is often very useful in practice to find
a particularly simple form of the matrix
representation, e.g. a diagonal matrix [Unit V]
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Why does the change of basis formula work?

let v&€V be any vector. Then we have:
PTIGP « Vg = P[Tlg* Plvly
= P'1[T]/3 [Vl
=P [Tl [Vl
=P [T(v)lg
=[T(V)lp
=[Tlg * Vlp
so P-[T]4P = [T], as required
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Example: linear operators and change of basis

[problem 6.23] The linear operator T is defined on R? by the
formula T(x,y) = (5x-y,2x+y). The old basis is the standard basis ¢
and the new basis is 8 = {u,,u,} = {(1,4), (2,7)}. Find (a) the two
change of basis matrices P and P, (b) [T ], and (c) [T ],
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.... Example: problem 6.23 cont'd
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Changing basis in a matrix representation-method

+ old basis 8 = {uy,us, ... ,u,} and new basis " =
{Vivo, V)

* T:V—Vis a linear operator with matrix
representation [T],

tofind the new matrix representation [T], of T with
respect to 8" you can

- find the g coordinates [T(v,)], for each new basis vector
and follow the procedure on slide 50

OR [easier].....
— find the change of basis matrix P and use the formula:

[Tly=PTI,P
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Example: matrix representations change of basis

[problem 6.25] The linear operator T is defined on R3 by the
formula T(x,y,z) = (x+3y+z, 2x+5y-4z, x-2y+2z). Find the matrix B
which represents T with respect to the basis 8 = {u,,u,,us} =
{(1,1,0), (0,1,1), (1,2,2)}.
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.... Example:problem 6.25 cont'd
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Matrix representations: wrap-up

T: V-V a linear operator. = {uy, ... u,} a basis of V.
B ={vy, ... v} another basis of V.
1. The matrix representation of T with respect to is
the matrix [T],
» arrange the coordinate vectors [T(u;)];as columns for [T],
+ forany vector w we have [T(w)],=[T];[wl,
2. The change of basis matrix from § to 8° coordinates
is the matrix P
+ arrange the coordinates of [v]; as columns for P
¢ the coordinates of a vector w with respect to the new basis
B’ are given by [w]; = P-'[w],
3. The matrix representation of T with respect to the
new basis §is given by [T]; = P-'[T];P
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