

3

Unit III - Linear Maps

Unit III - Linear Maps

Example: Using bases (a) Find the unique linear map T: $\mathbb{R}^3 \rightarrow \mathbb{R}^2$ so that $T(1,1,1) = (1,0)$, $T(1,1,0) = (2,-1)$, $T(1,0,0) = (4,3)$ [Translation: Find a formula for $T(x,y,z)$] (b) Evaluate $T(2,-3,5)$.	Example: Using bases
Unit III - Linear Maps 17	Unit III - Linear Maps 18

Example: image of a linear map [Text example 5.9] find a basis for the image of T: R ⁴ →R ³ defined by T(x,y,z,t) = (x-y+z+t, 2x-2y+3z+4t, 3x-3y+4z+5t)	 Finding the image of a linear map this example illustrates something important even though a linear map preserves linear combinations of vectors a linear map does <u>NOT</u> preserve linear independence in general so a basis of V does <u>NOT</u> necessarily map to a basis of the image T(V)
Unit III - Linear Maps 23	Unit III - Linear Maps 24

Examples: kernel of a linear map		Examples: kernel of a linear map	
[Text example 5.9] find a basis for the kernel of T: $R^4 \rightarrow R^3$ defined by T(x,y,z,t) = (x-y+z+t, 2x-2y+3z+4t, 3x-3y+4z+5t)		[Problem 5.16] Find a basis for the kernel of T: $R^4 \rightarrow R^3$ defined by T(x,y,z,t) = (x-y+z+t, x+2z-t, x+y+3z-3t)	
	-		
Unit III - Linear Maps	29	Unit III - Linear Maps 30	

1. Matrix representation of a linear operator	Matrix representation of a linear operator
 let V be a finite-dimensional v.s. choose a basis β = {u₁,, u_n} of Vnotation alert :-(a linear operator T:V→V is completely determined by its action on a basis of V: T(u₁),, T(u_n) these are vectors in V, so they can be expressed in terms of the basis β: T(u₁) = a₁₁u₁ + a₁₂u₂ + + a_{1n}u_n T(u₂) = a₂₁u₁ + a₂₂u₂ + + a_{2n}u_n T(u_n) = a_{n1}u₁ + a_{n2}u₂ + + a_{nn}u_n recall the coordinates of T(u_i) with respect to β are just [T(u_i)]_β = [a₁₁, a₁₂,, a_{in}]_β 	• arrange these coordinate vectors as the columns of a matrix: $[T]_{\beta} = [[T(u_1)]_{\beta} [T(u_2)]_{\beta} \cdots [T(u_n)]_{\beta}]$ $= \begin{bmatrix} a_{11} & a_{21} & \cdots & a_{n1} \\ a_{12} & a_{22} & \cdots & a_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{nn} \end{bmatrix}$ • this is called the <i>matrix representation</i> of T with respect to the basis β • we can use this matrix [T]_{\beta} and coordinate vectors in R ⁿ instead of T and vectors in V because: $[T(v)]_{\beta} = [T]_{\beta} [v]_{\beta}$
Unit III - Linear Maps 47	Unit III - Linear Maps 48

Example: changing basis from standard [Example 6.6-6.7] Consider the standard basis $\varepsilon = (e_1, e_2, e_3)$ and a new basis $\beta = \{u_1, u_2, u_3\} = \{(1, 0, 1), (2, 1, 2), (1, 2, 2)\}$. Find (a) the change of basis matrix P from ε to β and vice versa (b) the coordinates of the vector (1,3,5) with respect to the new basis.	Example: example 6.6-6.7 (cont'd)
Unit III - Linear Maps 59	Unit III - Linear Maps 60

Example: problem 6.23 cont'd	 Old basis β = {u₁, u₂,, u_n} and new basis β' = {v₁, v₂,, v_n} T: V→V is a linear operator with matrix representation [T]_β to find the new matrix representation [T]_β of T with respect to β' you can find the β coordinates [T(v_k)]_β for each new basis vector and follow the procedure on slide 50 OR [easier] find the change of basis matrix P and use the formula: [T]_β = P⁻¹[T]_βP
Unit III - Linear Maps 67	Unit III - Linear Maps 68

Example: matrix representations change of basis	Example:problem 6.25 cont'd
[problem 6.25] The linear operator T is defined on R ³ by the formula T(x,y,z) = (x+3y+z, 2x+5y-4z, x-2y+2z). Find the matrix B which represents T with respect to the basis $\beta = \{u_1, u_2, u_3\} = \{(1,1,0), (0,1,1), (1,2,2)\}.$	
Unit III - Linear Maps 69	Unit III - Linear Maps 70

